Thresholding Citra


Citra digital merupakan representasi dari fungsi intensitas cahaya dalam bidang dua dimensi. Berdasarkan jenis warnanya, citra dapat dikelompokkan menjadi tiga jenis yaitu citra RGB, citra grayscale, dan citra biner.

Citra RGB

Citra Grayscale

Citra Biner

lena lena_gray lena_bw

Citra RGB merupakan citra yang tersusun oleh tiga kanal warna yaitu kanal merah, kanal hijau, dan kanal biru. Pada citra RGB 24-bit, masing-masing kanal warna memiliki nilai intensitas piksel dengan kedalaman bit sebesar 8-bit yang artinya memiliki variasi warna sebanyak 2^8 = 256 derajat warna (0 s.d 255). Setiap piksel pada citra RGB memiliki nilai intensitas yang merupakan kombinasi dari nilai R, G, dan B. Variasi warna pada setiap piksel pada citra RGB adalah sebanyak 256 x 256 x 256 = 16.777.216.

-read more->

Jaringan Syaraf Tiruan untuk Memprediksi Jumlah Penduduk


Salah satu penerapan algoritma jaringan syaraf tiruan adalah untuk sistem prediksi (forecasting). Prediksi dapat dilakukan dalam bentuk urutan waktu (time series) atau dapat pula dilakukan dalam bentuk bukan urutan waktu.

Dalam sistem prediksi urutan waktu, data masukan adalah berupa beberapa data dalam kurun waktu tertentu, sedangkan data keluarannya adalah data pada kurun waktu berikutnya. Pada sistem prediksi ini data keluaran diasumsikan hanya dipengaruhi oleh data-data sebelumnya.

Contoh sistem prediksi urutan waktu:

sistem untuk memprediksi jumlah penduduk pada bulan tertentu di mana data masukannya adalah jumlah penduduk pada 12 bulan sebelumnya.

Untuk sistem prediksi bukan urutan waktu, data masukannya adalah berupa beberapa variabel data yang mempengaruhi nilai data keluaran, sedangkan data keluarannya adalah berupa data pada kurun waktu berikutnya. Pada sistem prediksi ini variabel-variabel yang mempengaruhi nilai data keluaran diikutsertakan untuk melakukan prediksi.

Contoh sistem prediksi bukan urutan waktu:

sistem untuk memprediksi jumlah penduduk pada bulan tertentu di mana data masukannya adalah jumlah penduduk pada 1 bulan sebelumnya, tingkat kesejahteraan penduduk, tingkat keamanan lingkungan, faktor politik, dan faktor-faktor demografi lainnya pada 1 bulan sebelumnya.

-read more->

Jaringan Syaraf Tiruan untuk Identifikasi Jenis Bunga


Jaringan syaraf tiruan (neural network) merupakan algoritma yang mampu melakukan identifikasi suatu kelas berdasarkan ciri masukan yang diberikan. Algoritma ini akan melatihkan ciri masukan yang diberikan pada masing-masing kelas sehingga diperoleh suatu arsitektur jaringan dan bobot-bobot awal yang mampu memetakan ciri masukan ke dalam kelas keluaran.

Terdapat banyak jenis jaringan syaraf tiruan, di antaranya adalah backpropagation, perceptron, probablistik neural network, radial basis network, dll.

Berikut ini merupakan contoh pemrograman matlab (menggunakan matlab r2015b) untuk mengidentifikasi jenis bunga menggunakan algoritma jaringan syaraf tiruan radial basis network (rbfnn). Pada proses pelatihan jaringan digunakan 100 citra latih yang terdiri dari 50 citra bunga dengan jenis kansas state flower dan 50 citra bunga berjenis marguerite daisy. Sedangkan pada proses pengujian digunakan 60 citra uji yang terdiri dari 30 citra bunga kansas state flower dan 50 citra bunga marguerite daisy.

Citra bunga yang digunakan dalam pemrograman ini diunduh dari halaman website http://www.robots.ox.ac.uk/~vgg/data/flowers/17/. Contoh citra bunga yang digunakan ditunjukkan pada gambar berikut.

-read more->

Cara Menghitung Nilai MSE, RMSE, dan PSNR pada Citra Digital


Mean Square Error (MSE), Root Mean Squared Error (RMSE), dan Peak Signal-to-Noise Ratio (PSNR) merupakan contoh parameter yang biasa digunakan sebagai indikator untuk mengukur kemiripan dua buah citra. Parameter tsb sering digunakan untuk membandingkan hasil pengolahan citra dengan citra awal atau citra asli. Persamaan yang digunakan untuk menghitung ketiga paramater tersebut adalah sebagai berikut:

MSE dan RMSE tidak memiliki satuan sedangkan satuan dari PSNR adalah desibel. Semakin mirip kedua citra maka nilai MSE dan RMSE nya semakin mendekati nilai nol. Sedangkan pada PSNR, dua buah citra dikatakan memiliki tingkat kemiripan yang rendah jika nilai PSNR di bawah 30 dB.

Berikut ini merupakan contoh pemrograman GUI matlab untuk menghitung nilai MSE, RMSE, dan PSNR. Ketiga nilai tersebut digunakan untuk menghitung tingkat kemiripan citra yang terkontaminasi derau/noise dengan citra asli dan citra hasil restorasi dengan citra asli. Derau aditif ditambahkan pada citra asli antara lain adalah derau impuls (salt & pepper), derau uniform, derau gaussian, dan derau rayleigh. Sedangkan filter yang digunakan untuk merestorasi citra antara lain adalah filter rata-rata dan filter median masing-masing menggunakan kernel berukuran 3 x 3 dan 5 x 5.

-read more->

Segmentasi Citra dengan Metode Thresholding


Thresholding merupakan salah satu metode segmentasi citra yang memisahkan antara objek dengan background dalam suatu citra berdasarkan pada perbedaan tingkat kecerahannya atau gelap terang nya. Region citra yang cenderung gelap akan dibuat semakin gelap (hitam sempurna dengan nilai intensitas sebesar 0), sedangkan region citra yang cenderung terang akan dibuat semakin terang (putih sempurna dengan nilai intensitas sebesar 1). Oleh karena itu, keluaran dari proses segmentasi dengan metode thresholding adalah berupa citra biner dengan nilai intensitas piksel sebesar 0 atau 1. Setelah citra sudah tersegmentasi atau sudah berhasil dipisahkan objeknya dengan background, maka citra biner yang diperoleh dapat dijadikan sebagai masking utuk melakukan proses croppping sehingga diperoleh tampilan citra asli tanpa background atau dengan background yang dapat diubah-ubah.

Berikut ini merupakan contoh pemrograman matlab mengenai aplikasi dari metode thresholding untuk melakukan segmentasi terhadap citra digital. Setelah objek berhasil disegmentasi, proses selanjutnya adalah mengganti-ganti background citra rgb asli

Langkah pemrogramannya adalah sebagai berikut:
1. Membaca dan menampilkan citra asli

clc; clear; close all;

% Object
Img = imread('the mario bros.jpg');
figure, imshow(Img);

Sehingga diperoleh tampilan

-read more->

Pengolahan Citra untuk Ekstraksi Ciri Objek


Ekstraksi ciri citra merupakan tahapan mengekstrak ciri atau informasi yang dimiliki oleh suatu objek dalam citra. Ciri atau informasi tersebut dapat digunakan untuk membedakan antara objek yang satu dengan objek lainnya.

Ekstraksi ciri citra merupakan tahapan yang sangat penting dalam sebuah sistem visi komputer. Tahapan ini menentukan baik tidaknya tingkat pengenalan objek yang dilakukan oleh komputer.

Dalam pemilihan ciri hendaknya memperhatikan hal-hal sebagai berikut:

  1. Secara visual, ciri apakah yang membedakan antara objek satu dengan lainnya. Apakah bentuknya, warnanya, teksturnya, ukurannya, atau geometrinya.
  2. Parameter apakah yang mewakili ciri tersebut. Misalnya secara visual antara objek satu dengan lainnya tampak berbeda ukurannya, maka parameter yang dapat digunakan untuk mengenali objek adalah luas.
  3. Menentukan jumlah parameter yang akan digunakan. Semakin banyak parameter pada umumnya tingkat pengenalan semakin baik. Namun harus dipastikan bahwa parameter-parameter yang digunakan benar-benar dapat membedakan antar objek.

Ciri yang diekstrak dalam tahapan ekstraksi ciri kemudian digunakan sebagai masukan dalam tahapan klasifikasi objek. Tahapan klasifikasi dapat menggunakan berbagai jenis algoritma ataupun dapat juga menggunakan aturan if else sederhana.

Berikut ini merupakan contoh pemrograman komputer menggunakan bahasa pemrograman MATLAB untuk melakukan ekstraksi ciri objek dalam citra digital. Citra yang digunakan adalah citra sand play set.jpg yang ditunjukkan pada gambar di bawah ini:

sand play set.jpg

-read more->

Segmentasi Citra Grayscale dengan Metode K-Means Clustering


K-means clustering merupakan salah satu algoritma yang dapat mempartisi data menjadi beberapa region kluster. Proses partisi data didasarkan pada jarak terdekat antara data dengan centroid masing-masing kluster. Berikut ini merupakan salah satu contoh pemrograman matlab mengenai segmentasi citra grayscale dengan metode k-means clustering. Citra yang digunakan adalah citra cat.jpg di mana objek yang ingin disegmentasi adalah berupa hewan kucing, sedangkan background adalah berupa rumput.

Langkah-langkah segmentasi citra adalah sebagai berikut:
1. Membaca citra rgb asli

-read more->

Pengolahan Video untuk Mendeteksi Warna


Deteksi warna dapat dilakukan dengan cara melakukan transformasi ruang warna citra. Berikut ini merupakan contoh pemrograman matlab mengenai deteksi warna merah pada ruang warna HSV yang terdiri dari Hue (H), Saturation (S), dan Value (V). Langkah-langkah pemrogramannya adalah sebagai berikut:
1. Membaca video asli
2. Mengekstrak setiap frame pada video asli
3. Melakukan transformasi ruang warna yang semula berada pada ruang warna RGB menjadi ruang warna HSV
4. Melakukan segmentasi warna merah pada ruang warna HSV berdasarkan nilai H (0.8 s.d 1), S (0.5 s.d 1) dan V (0.1 s.d 1)
5. Menjalankan seluruh frame hasil pengolahan secara sekuensial dalam bentuk video

Pada contoh ini digunakan video dengan spesifikasi:

Property Nilai
Title August Rush 2007.mp4
Durasi 5 detik
Panjang frame 640
Lebar frame 480
Frame rate 23 frame/ detik
Jumlah frame 119

Tampilan video yang digunakan yaitu

-read more->

Pengolahan Video untuk Mendeteksi Warna Kulit


Deteksi warna kulit dapat dilakukan dengan cara melakukan transformasi ruang warna citra. Berikut ini merupakan contoh pemrograman matlab mengenai deteksi warna kulit pada ruang warna YCbCr yang terdiri dari luminance (Y) dan chrominance (Cb dan Cr). Langkah-langkah pemrogramannya adalah sebagai berikut:
1. Membaca video asli
2. Mengekstrak setiap frame pada video asli
3. Melakukan transformasi ruang warna citra yang semula berada pada ruang warna RGB menjadi ruang warna YCbCr
4. Melakukan segmentasi warna kulit pada ruang warna YCbCr berdasarkan nilai Y (20 s.d 60), Cb (117 s.d 127) dan Cr (133 s.d 153)
5. Menjalankan seluruh frame hasil pengolahan secara sekuensial dalam bentuk video

Pada contoh ini digunakan video dengan spesifikasi:

Property Nilai
Title Maze Runner The Scorch Trials 2015.mp4
Durasi 10 detik
Panjang frame 640
Lebar frame 480
Frame rate 23 frame/ detik
Jumlah frame 246

Tampilan video yang digunakan yaitu

-read more->

Pembuatan Database Mahasiswa menggunakan MATLAB


Berikut ini merupakan contoh pemrograman GUI Matlab R2015b untuk pembuatan database mahasiswa. Sistem yang dirancang meliputi Form Registrasi Mahasiswa, Form Status Mahasiswa, dan Form Database Mahasiswa. Data mahasiswa disimpan dalam bentuk tabel dengan ekstensi .mat.

Langkah-langkah registrasi dan visualisasi database mahasiswa adalah sebagai berikut:
1. Membuka tampilan menu awal
Pada menu ini terdapat beberapa tombol untuk menuju ke sub menu lain di antaranya adalah Form Registrasi, Form Status, Form Database, dan Sub menu keluar

-read more->

Pembuatan Database menggunakan Matlab dan Ms. Excel


Dalam pembuatan basis data (database), Matlab dapat diintegrasikan dengan beberapa software lain contohnya adalah Microsoft Office Excel 2007. Berikut ini merupakan contoh pemrograman matlab untuk membuat database mahasiswa menggunakan GUI Matlab R2015b.

Sistem basis data yang dirancang terdiri dari 4 buah tampilan GUI yaitu:
1. Tampilan menu Utama (Home)
Pada menu ini disajikan 4 buah tombol untuk masuk ke dalam tampilan submenu yang lain. Submenu yang lain antara lain yaitu Menu Registrasi Mahasiswa, Menu Status Mahasiswa, Menu Database Mahasiswa, dan Menu Keluar.

-read more->

%d bloggers like this: