Cara melakukan cropping citra secara otomatis


Dalam bidang pengolahan citra digital, segmentasi merupakan proses yang bertujuan untuk memisahkan suatu region dengan region lainnya. Pemisahan didasarkan pada perbedaan karakteristik antar region seperti perbedaan tingkat kecerahan, warna, tekstur, dll. Proses tersebut menghasilkan keluaran berupa citra biner di mana region yang telah tersegmentasi (pada umumnya disebut juga dengan foreground) akan berwarna putih atau bernilai 1. Sedangkan region lainnya (disebut juga dengan background) akan berwarna hitam atau bernilai 0.

Ada berbagai jenis metode segmentasi citra di antaranya adalah thresholding, active contour, deteksi tepi, transformasi hough, watershed, region growing, dll. Pada contoh ini ditunjukkan sebuah proses segmentasi citra dengan metode thresholding. Citra keluaran dari proses tersebut adalah citra biner yang kemudian digunakan untuk melakukan cropping dan juga perhitungan luas, keliling, dan centroid dari masing-masing objek.

Langkah-langkah pemrograman matlab untuk melakukan segmentasi citra adalah sebagai berikut:
1. Membaca citra asli

clc; clear; close all; warning off all;
originalImage = imread('doodles.jpg');
figure, imshow(originalImage);

sehingga diperoleh tampilan citra asli seperti pada gambar di bawah ini:

1

-read more->

Pengolahan Video untuk Mendeteksi Objek Bergerak dengan Metode Background Subtraction


Berikut ini merupakan pemrograman matlab mengenai pengolahan video untuk mendeteksi objek bergerak (object tracking) dengan metode background subtraction.
Secara garis besar langkah-langkahnya adalah:
1. Mengekstrak semua frame pada video
2. Mencari frame background secara otomatis dengan cara menghitung nilai modus pada setiap frame
3. Mengkonversi CurrentFrame dan BackgroundFrame menjadi citra grayscale
4. Mengkurangkan antara kedua frame tersebut
5. Mengkonversi citra hasil pengurangan menjadi citra biner
6. Melakukan operasi morfologi untuk menghilangkan noise
7. Menjadikan citra hasil operasi morfologi sebagai masking untuk memvisualisasikan objek yang bergerak
8. Menjalankan setiap frame hasil deteksi secara sekuensial (video)

Pada contoh ini digunakan video dengan spesifikasi sebagai berikut:

Name: ‘SampleVideo.avi’
Duration: 5.3333
Width: 360
Height: 240
FrameRate: 15.0000
BitsPerPixel: 24
VideoFormat: ‘RGB24’

Video tersebut memiliki durasi selama 5.3333 detik dan frame rate sebesar 15 frame per detik sehingga banyaknya frame ketika diekstrak adalah 5.3333 x 15 = 80 frame. Tampilan frame pada setiap detik ditunjukkan pada gambar di bawah ini:

Detik ke- Frame
0 Frame 1
1 Frame 16
2 Frame 31
3 Frame 46
4 Frame 61
5 Frame 76

-read more->

Ekualisasi Histogram pada Citra Digital


Berikut ini merupakan pemrograman matlab untuk melakukan ekualisasi histogram citra secara manual.

Langkah-langkahnya adalah:

1. Membaca citra grayscale

clc;clear;close all;

I = imread('pout.tif');
figure, imshow(I);
title('Original Image')

1

-read more->

Pengolahan Citra Digital untuk Deteksi Tepi Obyek


Berikut ini merupakan contoh pemrograman matlab untuk mendeteksi obyek dalam citra digital menggunakan metode deteksi tepi roberts.

Langkah-langkah pemrogramannya adalah sebagai berikut:
1. Membaca citra asli
1
-read more->

Pengolahan Citra Digital untuk Mendeteksi Warna dan Bentuk Obyek


Berikut ini merupakan pemrograman GUI Matlab untuk mendeteksi warna dan bentuk suatu obyek pada citra digital.

Proses deteksi warna diawali dengan mengkonversi ruang warna citra RGB (Red, Green, Blue) menjadi HSV (Hue, Saturation, Value). Selanjutnya proses klasifikasi warna dilakukan berdasarkan pengelompokan nilai Hue.

Sedangkan proses deteksi bentuk diawali dengan mengkonversi ruang warna citra RGB menjadi grayscale. Setelah itu dilakukan thresholding sehingga diperoleh citra biner. Kemudian dilakukan ekstraksi ciri morfologi dari citra biner berdasarkan parameter eccentricity dan metric. Proses klasifikasi citra dilakukan berbasis aturan (rule based) sederhana.

1. Membuka tampilan GUI awal
1

-read more->

Algoritma k-means clustering dan Naive Bayes classifier untuk Pengenalan Pola Tesktur


K-means Clustering merupakan salah satu metode data clustering non hirarki yang berusaha mempartisi data yang ada ke dalam satu atau lebih cluster/kelompok. Metode ini mempartisi data ke dalam cluster/kelompok sehingga data yang memiliki karakteristik yang sama dikelompokkan ke dalam satu cluster yang sama dan data yang mempunyai karakteristik yang berbeda dikelompokkan ke dalam kelompok yang lain.

Sedangkan Naive Bayes Classifier merupakan salah satu metode machine learning yang memanfaatkan perhitungan probabilitas dan statistik. Metode ini dikemukakan oleh ilmuwan Inggris yaitu Thomas Bayes untuk memprediksi probabilitas di masa depan berdasarkan pengalaman di masa sebelumnya.

Berikut ini merupakan pemrograman matlab (menggunakan Matlab R2015b) mengenai pola tekstur citra menggunakan algoritma k means clustering dan naive bayes classifier. Citra yang digunakan adalah citra tekstur Brodatz sejumlah 112 buah seperti tampak pada gambar di bawah ini:

1

-read more->

Perbaikan Kualitas Citra dalam Pengolahan Video


Perbaikan kualitas citra (Image Enhancement) merupakan salah satu tahapan dalam computer vision yang bersifat opsional.

Perbaikan kualitas citra bertujuan agar citra lebih mudah untuk diinterpretasi atau diolah dalam tahapan selanjutnya seperti segmentasi citra maupun ekstraksi ciri citra.

Metode perbaikan kualitas citra sangat beragam seperti operasi titik maupun operasi spasial yang dilakukan pada domain spasial maupun operasi transformasi yang dilakukan pada domain frekuensi.

Perbaikan kualitas citra bersifat heuristik dan eksperimentatif karena sesungguhnya tidak ada algoritma yang pasti dalam memperbaiki kualitas suatu citra.

Oleh sebab itu, bidang perbaikan kualitas citra sangat terbuka pada penemuan metode baru maupun pengembangan metode yang sudah ada.

Perbaikan kualitas citra dapat pula diaplikasikan dalam bidang pengolahan video (video processing). Hal ini karena sejatinya video adalah sekumpulan citra yang dijalankan secara sekuensial.

Secara garis besar, tahapan perbaikan kualitas citra dalam pengolahan video adalah sebagai berikut:
1. Membaca file video
2. Mengekstrak seluruh frame citra yang menyusun video
3. Melakukan operasi perbaikan kualitas citra pada setiap frame
4. Menyatukan kembali frame citra yang telah diperbaiki kualitasnya dan menjalankannya secara sekuensial dalam bentuk video.

Berikut ini merupakan contoh pemrograman GUI Matlab untuk pengolahan video mengenai perbaikan kualitas citra pada domain spasial.

Operasi perbaikan kualitas citra yang dilakukan di antaranya adalah histogram equalization, intensity adjustment, dan gamma correction.

Selain itu, diberikan juga perintah mengenai pertukaran kanal warna pada ruang warna RGB (true color) dan visualisasi color map citra pada citra pseudo color.

1. Menampilkan GUI awal
1
-read more->

Cara menampilkan video pada GUI Matlab


Pengolahan video merupakan cabang ilmu yang merupakan bagian dari bidang sistem visi komputer (computer vision).

Video sejatinya merupakan sekumpulan citra yang dijalankan secara sekuensial dengan frame rate tertentu.

Pada umumnya pengolahan video dilakukan dengan langkah-langkah berikut:
1. Membaca file video asli
2. Mengekstrak setiap frame video
3. Mengolah setiap frame tersebut dengan metode dan tujuan tertentu
4. Menampilkan kembali hasil pengolahan frame citra secara sekuensial dalam bentuk video

Pengolahan video telah banyak dilakukan dan dikembangkan oleh para saintis di dunia karena perannya yang cukup besar dalam perkembangan teknologi.

Dalam bidang computer vision, kamera telah banyak dimanfaatkan untuk menggantikan maupun membantu peran mata manusia untuk mengawasi, mendeteksi, ataupun mengenali suatu obyek dalam video baik secara real time maupun non real time.

Oleh sebab itu, perkembangan ilmu pengetahuan khususnya pada bidang pengolahan citra digital dan pengolahan video terus menerus dilakukan.

Berikut ini merupakan contoh pemrograman GUI Matlab mengenai pengolahan video sederhana di antaranya adalah untuk mengekstrak kanal warna citra RGB, mengkonversi ruang warna RGB menjadi grayscale, mengkonversi tone warna sepia, dan mengkonversi warna citra menjadi biner.

Format video yang dapat dibaca oleh Matlab di antaranya adalah .avi, .mpg, dan .mp4.

Tahapan pemrograman untuk pengolahan video adalah sebagai berikut:

1. Menampilkan GUI Matlab
1
-read more->

Model Ruang Warna Pengolahan Citra


Dalam bidang pengolahan citra digital dikenal berbagai macam ruang warna (color space) citra.

Yang paling umum adalah ruang warna RGB (Red, Green, Blue).

Ruang warna RGB mendefinisikan suatu warna berdasarkan tiga kanal (channel) warna yaitu merah, hijau, dan biru.

Ruang warna RGB untuk citra truecolor 24 bit diilustrasikan oleh gambar berikut:
CK_color_cube -read more->

k-means clustering menggunakan matlab


Data clustering merupakan salah satu metode data mining yang bersifat tanpa arahan (unsupervised).

Ada dua jenis data clustering yang sering digunakan dalam proses pengelompokan data yaitu hierarchical (hirarki) data clustering dan non-hierarchical (non hirarki) data clustering.

K-means merupakan salah satu metode data clustering non hirarki yang berusaha mempartisi data yang ada ke dalam satu atau lebih cluster/kelompok.

Metode ini mempartisi data ke dalam cluster/kelompok sehingga data yang memiliki karakteristik yang sama dikelompokkan ke dalam satu cluster yang sama dan data yang mempunyai karakteristik yang berbeda dikelompokkan ke dalam kelompok yang lain.

Ilustrasi algoritma k-means ditunjukkan pada gambar di bawah ini:
Untitled -read more->

Ikuti

Kirimkan setiap pos baru ke Kotak Masuk Anda.

Bergabunglah dengan 34 pengikut lainnya

%d blogger menyukai ini: