Blog Archives

Thresholding Citra


Citra digital merupakan representasi dari fungsi intensitas cahaya dalam bidang dua dimensi. Berdasarkan jenis warnanya, citra dapat dikelompokkan menjadi tiga jenis yaitu citra RGB, citra grayscale, dan citra biner.

Citra RGB

Citra Grayscale

Citra Biner

lena lena_gray lena_bw

Citra RGB merupakan citra yang tersusun oleh tiga kanal warna yaitu kanal merah, kanal hijau, dan kanal biru. Pada citra RGB 24-bit, masing-masing kanal warna memiliki nilai intensitas piksel dengan kedalaman bit sebesar 8-bit yang artinya memiliki variasi warna sebanyak 2^8 = 256 derajat warna (0 s.d 255). Setiap piksel pada citra RGB memiliki nilai intensitas yang merupakan kombinasi dari nilai R, G, dan B. Variasi warna pada setiap piksel pada citra RGB adalah sebanyak 256 x 256 x 256 = 16.777.216.

-read more->

Jaringan Syaraf Tiruan Untuk Pengenalan Pola


Berikut ini merupakan contoh pemrograman matlab untuk mengklasifikasi bentuk suatu objek dalam citra digital menggunakan algoritma jaringan syaraf tiruan propagasi balik (backpropagation neural network).

Pada contoh ini dilakukan pengklasifikasian terhadap bentuk segi-3, segi-4, dan segi-5. Ciri yang digunakan untuk membedakan ketiga jenis bentuk tersebut adalah metric dan eccentricity.

Metric merupakan nilai perbandingan antara luas  dan keliling objek. Sedangkan eccentricity merupakan nilai perbandingan antara jarak foci ellips minor dengan foci ellips mayor suatu objek. (Materi mengenai ekstraksi ciri lebih lanjut dapat dilihat pada laman berikut ini: Ekstraksi Ciri Citra).

Langkah-langkah pemrograman matlab untuk mengklasifikasi bentuk suatu objek dalam citra digital menggunakan matlab adalah sebagai berikut:
1. Menyiapkan data latih untuk proses pelatihan (training). Pada proses ini digunakan 45 citra data latih yang terdiri dari 15 citra segi-3, 15 citra segi-4, dan 15 citra segi-5.

data latih

-read more->

Ekualisasi Histogram pada Citra Digital


Histogram Citra merupakan diagram yang menunjukkan distribusi nilai intensitas cahaya pada suatu citra. Pada histogram, sumbu-x menyatakan nilai intensitas piksel sedangkan sumbu-y menyatakan frekuensi kemunculan piksel. Dalam bidang pengolahan citra digital, terkadang perlu dilakukan pre-processing yang merupakan proses perbaikan kualitas citra dengan tujuan untuk memudahkan manusia atau komputer untuk merepresentasikan citra. Salah satu metode perbaikan kualitas citra adalah perataan histogram atau yang sering disebut sebagai histogram equalization.

Berikut ini merupakan pemrograman matlab untuk melakukan ekualisasi histogram citra secara manual.

Langkah-langkahnya adalah:

1. Membaca citra grayscale

clc;clear;close all;

I = imread('pout.tif');
figure, imshow(I);
title('Original Image')

1

-read more->

Algoritma k-means clustering dan Naive Bayes classifier untuk Pengenalan Pola Tesktur


K-means Clustering merupakan salah satu metode data clustering non hirarki yang berusaha mempartisi data yang ada ke dalam satu atau lebih cluster/kelompok. Metode ini mempartisi data ke dalam cluster/kelompok sehingga data yang memiliki karakteristik yang sama dikelompokkan ke dalam satu cluster yang sama dan data yang mempunyai karakteristik yang berbeda dikelompokkan ke dalam kelompok yang lain.

Sedangkan Naive Bayes Classifier merupakan salah satu metode machine learning yang memanfaatkan perhitungan probabilitas dan statistik. Metode ini dikemukakan oleh ilmuwan Inggris yaitu Thomas Bayes untuk memprediksi probabilitas di masa depan berdasarkan pengalaman di masa sebelumnya.

Berikut ini merupakan pemrograman matlab (menggunakan Matlab R2015b) mengenai pola tekstur citra menggunakan algoritma k means clustering dan naive bayes classifier. Citra yang digunakan adalah citra tekstur Brodatz sejumlah 112 buah seperti tampak pada gambar di bawah ini:

1

-read more->

Model Ruang Warna Pengolahan Citra


Dalam bidang pengolahan citra digital dikenal berbagai macam ruang warna (color space) citra.

Yang paling umum adalah ruang warna RGB (Red, Green, Blue).

Ruang warna RGB mendefinisikan suatu warna berdasarkan tiga kanal (channel) warna yaitu merah, hijau, dan biru.

Ruang warna RGB untuk citra truecolor 24 bit diilustrasikan oleh gambar berikut:
CK_color_cube -read more->

k-means clustering menggunakan matlab


Data clustering merupakan salah satu metode data mining yang bersifat tanpa arahan (unsupervised).

Ada dua jenis data clustering yang sering digunakan dalam proses pengelompokan data yaitu hierarchical (hirarki) data clustering dan non-hierarchical (non hirarki) data clustering.

K-means merupakan salah satu metode data clustering non hirarki yang berusaha mempartisi data yang ada ke dalam satu atau lebih cluster/kelompok.

Metode ini mempartisi data ke dalam cluster/kelompok sehingga data yang memiliki karakteristik yang sama dikelompokkan ke dalam satu cluster yang sama dan data yang mempunyai karakteristik yang berbeda dikelompokkan ke dalam kelompok yang lain.

Ilustrasi algoritma k-means ditunjukkan pada gambar di bawah ini:

k-means
-read more->

Cara menghitung koefisien korelasi menggunakan matlab


Koefisien korelasi merupakan suatu nilai yang digunakan untuk mengukur tingkat kedekatan hubungan antara dua variabel.

Koefisien korelasi memiliki nilai berkisar antara -1 sampai dengan +1.

Koefisien korelasi bernilai +1 berarti bahwa dua variabel berkorelasi sempurna antara satu dengan yang lain atau dapat dikatakan dua variabel tersebut identik.

Nilai positif (+) menunjukkan hubungan dua variabel yang sebanding atau berbanding lurus.

Koefisien korelasi bernilai 0 berarti bahwa dua variabel sama sekali tidak berhubungan/berkaitan satu sama lain.

Dan koefisien korelasi bernilai negatif (-) berarti bahwa dua variabel memiliki hubungan yang berbanding terbalik.

Koefisien korelasi dapat dihitung menggunakan persamaan berikut:
persamaan korelasiBerikut ini merupakan contoh pemrograman matlab untuk menghitung koefisien korelasi antara dua variabel.

Sebagai contoh, misalnya kita ingin merancang bangun alat untuk mengukur suhu menggunakan sensor jenis LM35, maka setelah alat tersebut dibuat perlu kita validasi dengan hasil pengukuran alat ukur suhu standar seperti termometer digital.

Langkah-langkah menghitung koefisien korelasi menggunakan matlab adalah sebagai berikut:
1. Mempersiapkan data, pada contoh ini data terdiri dari hasil pengukuran suhu menggunakan alat dan hasil pengukuran suhu menggunakan termometer digital. Data disajikan dalam format .xlsx (excel)
data excel
-read more->

Representasi Citra Digital dan Piksel Penyusunnya


Citra adalah representasi dari fungsi intensitas cahaya dalam bidang dua dimensi. Berdasarkan sinyal pembentuknya, citra dibedakan menjadi dua jenis yaitu citra analog dan citra digital.

1. Citra Analog
Citra analog merupakan citra yang terbentuk dari sinyal kontinyu. Nilai intensitas cahaya pada citra analog memiliki range antara 0 s.d ~. Alat akuisisi citra analog antara lain mata manusia dan kamera analog.

2. Citra Digital
Citra digital merupakan citra yang terbentuk dari sinyal diskrit. Nilai intensitas cahaya pada citra digital bergantung pada kedalaman bit yang menyusunnya (materi lebih lanjut mengenai kedalaman bit suatu citra dapat dilihat pada laman berikut: Kedalaman Bit Suatu Citra Grayscale). Alat akuisisi citra digital antara lain yaitu kamera digital, smartphone, webcam, scanner, mikroskop digital, pesawat radiodiagnostik seperti CT Scan, CR, MRI, USG, dll.

Dalam bidang dua dimensi, citra dibentuk oleh sekumpulan picture element (pixel) yang memiliki dua informasi penting yaitu koordinat piksel (x,y) dan nilai intensitas piksel f(x,y) (materi lebih lanjut mengenai piksel sebagai penyusun citra digital dapat dilihat pada laman berikut: Pengolahan Citra Digital).

Berikut ini merupakan pemrograman matlab mengenai representasi citra digital dan piksel penyusunnya:
1. Citra digital 1-bit (2 derajat keabuan)
Pada citra ini nilai intensitas citra dibagi menjadi 2^1 = 2 derajat keabuan yaitu hitam (0) dan putih (1). Citra jenis ini disebut juga dengan citra biner (binary image).

1
-read more->

Transformasi Fourier Satu Dimensi


Transformasi Fourier merupakan operasi transformasi yang mengubah domain suatu sinyal periodik dari domain waktu menjadi domain frekuensi. Transformasi ini umumnya digunakan pada bidang pengolahan sinyal digital maupun bidang pengolahan citra digital. Pada tahun 1822, Joseph Fourier, ahli matematika dari Perancis mengemukakan bahwa:

“Setiap fungsi periodik (sinyal) dapat dibentuk dari penjumlahan gelombang-gelombang sinus atau cosinus”.

Berikut ini merupakan contoh pemrograman matlab mengenai tranformasi Fourier satu dimensi. Persamaan yang digunakan untuk membentuk sinyal periodik dalam domain waktu pada contoh ini adalah y = sin (2*pi*f1*t) + sin (2*pi*f2*t).

1. Sinyal periodik dengan f1 = 30 dan f2 = 0
1
-read more->

Restorasi Citra Digital Menggunakan Matlab


Dalam dunia nyata, suatu proses pencitraan hampir dapat dipastikan akan menghasilkan citra keluaran yang mengalami degradasi. Penyebab degradasi ini antara lain berupa sensor yang tidak fokus, pergerakan dari obyek maupun sistem pencitraan, gangguan derau termal pada sensor dan perangkat elektronik sistem pencitraan, maupun sebab-sebab lainnya yang terkait dengan lingkungan pengambilan data seperti turbulensi atmosfir pada praktek remote sensing dan pengamatan astronomi.

Untuk memperoleh citra yang lebih tepat, diperlukan adanya suatu proses restorasi citra. Restorasi citra berkaitan dengan upaya memperoleh kembali suatu citra asal dari sebuah citra yang terdegradasi, dengan memanfaatkan suatu pengetahuan mengenai proses terjadinya degradasi tersebut.

Restorasi citra (image restoration) dapat dibedakan dengan perbaikan citra (image enhancement), di mana proses yang dilakukan dalam perbaikan citra lebih bersifat heuristik dan lebih dititikberatkan pada upaya melakukan aksentuasi fitur dalam citra.

Berikut ini merupakan pemrograman matlab mengenai restorasi citra. Coding dapat dijalankan menggunakan software matlab minimal versi r2014b.

A. Model Derau Aditif
1. Citra noise test
1
-read more->

%d bloggers like this: